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Abstract

Pluto may be the only known case of precession-orbit resonance in the solar

system. The Pluto-Charon system orbits the Sun with a period of 1 Plutonian year, which

is 250.8 Earth years. The observed parameters of the system are such that Charon may

cause Pluto to precess with a period near 250.8 Earth years. This gives rise to two

possible resonances, heretofore unrecognized. The first is due to Pluto's orbit being highly

eccentric, giving solar torques on Charon with a period of 1 Plutonian year. Charon in turn

drives Pluto near its precession period. Volatiles, which are expected to shuttle across

Pluto's surface between equator and pole as Pluto's obliquity oscillates, might change the

planet' s dynamical flattening enough so that Pluto crosses the nearby resonance, forcing

the planet's equatorial plane to depart from Charon's orbital plane. The mutual tilt can

reach as much as 2 ° after integrating over 5.6 × 10 6 years, depending upon how close

Pluto is to the resonance and the supply of volatiles. The second resonance is due to the

Sun's traveling above and below Charon's orbital plane; it has a period half that of the

eccentricity resonance. Reaching this half-Plutonian year resonance requires a much larger

but still theoretically possible amount of volatiles. In this case the departure of Charon

from an equatorial orbit is about 1° after integrating for 5.6 x 106 years. The calculations

ignore libration and tidal friction. It is not presently known how large the mutual tilt can

grow over the age of the solar system, but if it remains only a few degrees, then observing

such small angles from a Pluto flyby mission would be difficult. It is not clear why the

parameters of the Pluto-Charon system are so close to the eccentricty resonance.
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1. Introduction

2

Pluto may be the only known case of precession-orbit resonance in the solar

system, with the planet being near a resonance associated with the eccentricity of its orbit

about the Sun. Volatiles moving about on Pluto's surface may cause the planet to sweep

across this resonance.

The mechanism is the following. Pluto has an equatorial bulge caused by rotational

flattening and the tidal attraction of Charon. Charon's gravitational torque on this bulge

would attempt to make Pluto precess on Charon's orbital plane if Pluto's spin axis were

inclined to it. Due to the nearness of Charon to Pluto, this precession period is very short.

The precession period in fact appears to be close to the orbital period of the system about

the Sun, which is 250.8 Earth years = one Plutonian year.

Charon revolves about Pluto with a period of 6.38726 days, which is short

compared to the motion of the system about the Sun; so that in effect the Sun sees a ring

about Pluto. The Sun torques this ring with periodicities of one Plutonian year due to the

eccentricity (e = 0.244) of the orbit about the Sun. Pluto's flattening effectively makes a

ring of matter around Pluto's equator, with the ring from Charon torqueing Pluto's ring

with the same periodicies as the solar torque on the system. Because Charon is so close to

Pluto, this torque is strong. This torque is capable of inclining Pluto's equator to Charon's

orbital plane if the system is close to the eccentricity resonance.

Pluto does in fact appear to be very close to the eccentricity resonance. The

volatiles nitrogen and methane, which may move from equator to pole as Pluto's obliquity

varies, could change Pluto's flattening enough to drive the planet across the eccentricity

resonance, forcing Pluto to tip slightly relative to Charon's orbital plane. In other words,

Charon no longer orbits in Pluto's equatorial plane. The amount of tilt is small: on the
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order of 2" at most after two obliquity cycles (5.6 x 104 years), depending on Pluto's

nearness to the resonance and the supply of volatiles.

Another possibility is that Pluto crosses the resonance associated with half the

period of the orbit about the Sun (125.4 Earth years = half a Plutonian year) as the Sun's

travels above and below Charon's orbital plane. The amount of volatiles moving between

equator and pole over the obliquity cycle would have to be larger than in the case of the

eccentricity resonance, but is still theoretically possible. The amount of mutual tilt after 5.6

x 10 6 years on the order of 1°.

2. Pluto's precession

This section demonstrates that a hydrostatic Pluto is near the eccentricity resonance

for the parameters of the Pluto-Charon system derived from astronomy. That Pluto can

reach this resonance and perhaps the half-Plutonian year resonance is shown in Section 3.

Charon causes Pluto to precess about their mutual orbital plane with a period T of

approximately

2xH
Z = (1)

L

where H is Pluto's rotational angular momentum

H = Gcoe = 2_eMeR_,co , (2)

and L is
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L = 3C(Me+Mc)M J " = 3n2MeJ; (3)
2a 3 2

[e.g., GoMreich, 1966], with the measure of the moment of inertia being

;re = G (4)
M e R_

In these equations Ce is Pluto's moment of inertia about its rotational axis, me the planet's

rotational speed, M e its mass, R e its radius, _.e its condensation factor, and J_" its second

degree zonal coefficient in the spherical harmonic expansion of Pluto's grav{tational field;

while M c is Charon's mass, a is Charon's distance from Pluto, n is Charon's mean

motion, and G is the universal constant of gravitation. Because of observed synchronous

rotation ¢0e = n, where

n2= G (M e + M c )/a3 (5)

The M e + M c term in L may look peculiar, but it is correct and comes from having two

masses accelerating, instead of one fixed mass with the other accelerating around it

[Brouwer and Clemence, 1961, pp. 268-272].

J[, which is a measure of the flattening of the planet, will be taken in this section

to be the hydrostatic value. The flattening is due to both rotation about its axis and to tides

from Charon [Bursa, 1994], so that

jp = je e
2,hydro 2.rot + J2,,i,t,, (6)
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Forarotatingplanetin hydrostaticequilibrium,theresponsedueto therotationalpotential

2 r 2 P2o(cos a) / 3Vro t = - O.)p (7)

is approximately

je _ 2 - 1 (8)
3GMp 1+ _

where r is the distance from Pluto's center and tx is the colatitude measured from the

rotation axis [e.g., Kauta, 1968, pp. 68-73]. Values for JP• 2,to, are on the order of 1 x 10 4.

For the equilibrium tides Pluto responds to Charon's tidal potential

= a3 cos 2 • - , (9)

where W is the angle measured from the line joining Pluto and Charon. This line lies

nearly in Pluto's equator, so that the P2o(COS (t) component introduces a factor of one-half

by the addition theorem [e.g., Kaula, 1968, p. 67]. Therefore
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.iv - 3GMc jv
2.,id,_ 2 cop2a 3 2.,o,

5
(10)

which is about 15% or so of the hydrostatic value and forms a non-trivial component of the

flattening. Substituting (2) through (10) in (1) and remembering that cot, = n give

Z

,--- 1

(11)

The only parameter which is well-determined in this equation is the mean motion n,

which is obtained from light curves; the motion of Charon and Pluto about their center of

mass has a period of 6.38726 + 0.00007 days [Tholen and Tedesco, 1994; Tholen and

Buie, 1997, p. 195]. Estimates for a vary between 19,405 km and 19,662 km [Null et aI.,

1993; Null and Owen, 1996], while the estimates ofR e range from 1 I00 km to 1206 km

[McKinnon et al., 1997, p. 298]. The measurements based on mutual events and direct

imaging, which appear to give the most accurate results, put R e between about I 150 km

and 1200 kin; this is the range which will be adopted here. The ratio a/Rp is thus assumed

to lie between 16.2 to 17.1.

Much more poorly determined are Mc/M P and _,e. Values for Mc/M e run from

0.0837 to 0.1566 [Null et al., 1993; Young et al., 1994], varying by almost a factor of 2.

This range will be assumed here.
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Thecondensationfactor_,edependsupon the density distribution inside Pluto,

which is unknown. From the mass and size estimates Pluto appears to be about 50%-70%

rock and 30%-50% ice [McKinnon et al., 1997]. If Pluto has not differentiated, then _.p

can be expected to be near 0.4, the value for a planet with constant density throughout the

interior. On the other hand, Pluto may have differentiated into a rocky core surrounded by

an icy mantle. If the core has a constant density Pr and the mantle a constant density Pi,

then the condensation factor (4) can be shown to be

where ff is the average density of the whole planet. For ice with density pg = 1000 kg rn s

and anhydrous rock with density Pr = 3500 kg m 3, )_e could be as low as 0.305,

depending upon the value of _. On the other hand, for hydrated rock with density pr =

2800 kg m -3 [McKinnon et al., 1997, p. 302], Le could only get as low as 0.322. Thus a

reasonable range for Le is probably 0.305 to 0.400.

Given the uncertainties in a/R e, Me.IM P, and _p, the best strategy appears to be to

assume Pluto is in one of the two resonances and plot MclM p vs. )_e to see whether the

parameters appear reasonable. This is easily done; (11) is quadratic in MclM p, giving
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i  6° rr° v13-2+ 4 + _-¢)
Mc = (13)
M e 10

where F is the right-hand factor in square brackets in (7)

F = 5 _v (14)
- 1

and depends only on _,p.

The results are plotted in Figure I. The lower shaded area shows the range for the

eccentricity resonance, while the upper shaded area does the same for the half-Plutonian

year resonance. The lower boundary is at (a/Rp) = 16.2 and the upper boundary is at 17.1

for each resonance. The resonances lie somewhere in the shaded areas. The region

between the dashed lines shows the observed range of Mc/M e, which is 0.0837 to 0.1566.

The value for n is assumed to be 2rd(6.38726 days), while the Plutonian year is taken to be

=

250.8 Earth years [Malhotra and Williams, 1997]. The lower shaded area in Figure 1

shows that resonant values ofMclM e fall within the observed range for the larger values of

_p. Hence a hydrostatic Pluto is near the eccentricity resonance, but not near the half-

Plutonian year resonance. The half-Plutonian year resonance (upper shaded area) appears

to be ruled out unless the observations are badly in error and Charon is much more massive

than presently thought, or Pluto has a large nonhydrostatic component to its flattening.

That a nonhydrostatic Pluto can reach both resonances through the transport of volatiles is

demonstrated in Section 4.
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Giventhewiderangeof possiblevaluesfor ratiosof moonto planetarymasses,the

nearnessto theeccentricityresonancemaynotbecoincidental.HencethePluto-Charon

systemmightactuallybe in this resonance,but isprobablynotnearthehalf-Plutonianyear

resonance.Forargumentsagainstbeingin theeccentricityresonance,seetheDiscussion.

3. Dynamics

Because of the similarity to the Earth-Moon-Sun system, GoIdreich's [1966]

equations can be adapted to the Pluto-Charon-Sun system. Charon and the Sun are

considered to be point-masses. Charon is assumed to be in a circular orbit about Pluto.

The equations average over the orbital motion of Charon about Pluto, which has a short

period (6 days) compared to the motion of the system about the Sun (250 years).

Goldreich's equations, however, are to be modified in the following ways: (1) allow the

Pluto-Charon system to be in an eccentric orbit about the Sun so as to be able to compute

the solar torques which vary with solar distance; and (2) marry Goldreich's equations with

Ward's [1974] so as to include the precession of the orbit on the invariable plane. The

variables will be Ward's: obliquities and precession angles measured with respect to the

Pluto-Charon system's orbit about the Sun.

Let 2, _,,and _ be unit vectors defining a right-handed inertial coordinate system

where f_ is normal to the solar system's invariable plane (see Figure 2). Let _ be the unit

vector normal to the orbit of the Pluto-Charon system about the Sun, so that

fi = (sinlsin_)_ - (sinlcosf2)_' + (cosl)_ (15)
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where I is the inclination of the orbit to the invariable plane and _ is the angle of the

ascending node in the invariable plane. The unit vector _' lying in in the invariable plane

pointing along the line of nodes is then

i' = (cosf_)i + (sinO)_, (16)

The unit vector from the Sun pointing to the Pluto-Charon system is

rs = [cos (co + f)] i' + [sin(og+f)]._' (17)

where co is the argument of perihelion andfis the true anomaly.

Inside the Pluto-Charon system let

fa = (sin 0 cos ¢) i' + (sin 0 sin ¢) _,' + (cos0) fi (18)

be the unit vector normal to Charon's orbit about Pluto. Here 0 is the obliquity of

Charon's orbit and ¢ is the east longitude of I_ on the orbital plane of the Pluto-Charon

system about the Sun; see Figure 2. Likewise, the unit spin vector § of Pluto, which

points along its axis of rotation, is given by

= (sin®cos_)i' + (sinOsin_)_,' + (cosO) fi (19)

where O and • are analogous to 0 and ¢, respectively.
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Thegoalof thefollowingderivationis to find thetimederivativesof dO/dt, dt_/dt,

dO�dr, and d_/dt. Clearly

^

cos 0 = b*fi (20)

cos
E ^ ^ ^"

_-i,. _-(b'n)° (21)

cosO = _°fi (22)

cos_ = x'°[s-(s'fi)fi]sinO _]
(23)

Concentrating on 0 and _ first, differentiating (20) and (21) yields

1dt sin 0 dt
(24)

and

d_
dt sin 2 0 sin ¢ b/\--d-tJ I (l_.dx'+_', dl_ )sin 0 sin ¢ _ "&

(25)

where by (16)
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%

d___._[dt= -_t_[(-sinf_)i + (cosO)_,] (26)

and by (15)

= cos l sin f_ d/ + sinlcos i
dt dt "-_'t ;

-(cos I cos_ dI - sin/sin"'df2'_ ^dt _"_--_t ) y (27)

- (sin Idl_'2dt2

The time rate of change of the orbital angular momentum of Pluto and the rotational

angular momentum of Pluto can be written

d(hb) ^ ^ ^ 3GMsMc a2 ^ ^ fj)= -L(§×b)(seb) + (rsob)(_sX
dt 2 r3s

+ T c (28)

a(H ) ^ ^ 3g°M'M's' = +L(§xl_)(s.b) + ...... 3
dt rs

+ Tp (29)

where

h = Mc_/C(Mp+ Mc)a (30)

and where Charon is assumed to be in a circular orbit about Pluto. Equations (28) and (29)

are analogous to Goldreich's [1966] equations (22), where ._ replaces Goldreich's _ and
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,%"

fi replaces his _. The first terms on the fight-hand side are the same as Goldreich's: they

represent the gravitational attraction between Charon and the equatorial bulge of Pluto,

where Charon's motion is averaged over one revolution, so that basically Charon forms a

ring. In effect, a ring attracts a ring. The last terms are the tidal torque T c on Charon's

orbit and tidal torque T e acting on Pluto. The middle terms give the attraction of the Sun on

Charon's ring and the Sun's attraction on Pluto's equatorial bulge when the system is at a

distance rs from the Sun. These terms are unlike Goldreich's equations, in that they do not

assume that the Pluto-Charon system is in a circular orbit about the Sun. Instead the

system is taken to be in an elliptical orbit, which, as has been seen above, is crucial to the

eccentricity resonance. These terms are also unlike Ward's [1974], in that they are not

averaged over the orbital period.

The derivatives dl_ /dt and d_ / dt can be found from

6 +
dt dt dt

(31)

so that

clb 1 d(hfJ) I dh
- + fi (32)

dt h dt h dt

Likewise,

,a l d(m) l all^
-- = + ----s (33)
dt H dt H dt
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so that by (28), (29), (32), and (33)

dh = T c.fa (34)
dt

dH A

dt = Tp .s (35)

It is also helpful to note that

sin 2 0

2
_ sin [2¢ - 2(c.o + f)] (36)

and

1 1 +_- Z
r 3 3 G21q(e) sin (qM)as q=-**

(37)

sin [2(09 + f)] +_,

= a_ss _-,G2oq(e)sin[ 2c°+(2+q)M]
q -_ - oca

(38)

cos [2(co + f)] +_

= -T ZG2oq(e)c°s[2(-°+(2+q) M]
as q=-o.

(39)

where a s is the semimajor axis, M is the mean anomaly of the Pluto-Charon system's orbit

about the Sun, and the G2pq(e) are the familiar second-degree eccentricity functions from
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geodesy [Kaula, 1966, p. 35; Caputo, 1967, p. 149]. After a great deal of trigonometry

(24) and (25) become

d_ dI
dO - sin I cos _ dt dt-_- = -- + sinew

L
[sin 20 sin 0 sin (2_ - 2¢) + sin20 cos 0 sin(_ - ¢)]2h

+ 3GMsMc a2 sin 0 +"
3 _-_Gzoq(e)sin[2c°+(2+q)M-2_]

4h a s q___**

fi - cos 0 i_)- T c

h sin 0

(40)

+ cot0cossdI
(sin I cot/9 sin _b- cos I) at -_t

+
_h I-2cos 0 + 3sin 2® cos0 + sin20 cos20 cos(* - 5) + sin 20 cos0 cos(2_ - 25)1

sin0 J

3GMsMqa 2 cos 0 +"
3 _.,G2oq(e)c°s[2°9+(2+q)M-20]

4h as q=_.

3GM sM ca 2 cos0 +®
3 _._G2tq(e)c°s(qM)

4h as q___.

+ (fix 1_). Tc

h sin 2 0

(41)

From a completely analogous derivation one also gets
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d....OO= _sinlcos_df2 + sin_dl
dt dt dt

+ 2_[sin2 0sinOsin(2_-2¢)+sin20cosOsin(_-¢)]

+ 3J_GMs(Me+Mc)R 2 sinO +**
3 _,G2oq(e)sin[2°9+(2+q)M-2_]

2H as q=_**

(n - cos O ,s)* Tp

H sin ®

(42)

dO (sinlcotOsindP_cosl) d_ + cotOcosodl
dt at dt

L I2cosO - 3sin 2 0 cosO
2H L

sin20 cos20 cos(_ - _)

sinO - sin 2 0 cosO cos(2_ - 2_)]

3J;CMS(M.+Mc)R cose "-
3 EG2oq(e)c°s[ 209 +(2+q)M-2_]

2H as q___.

3J_ GMs(Me+Mc)R _ cosO +"
-- 3 EG21q(e)c°s(q M)

2H as q=_.

+ (fix ,_)*Tp

H sin O

(43)

Equations (40)-(43) are the fundamental equations of the Pluto-Charon system.

Equations (40)-(43) will be simplified in the following ways. The only effect from

the tidal torques T c and Te which will be considered here will be the the equilibrium tidal

bulges; these will simply be lumped into the J2p coefficient for Pluto. Tidal friction will be

dealt with in a future paper. Hence in what follows below
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dh dH
= -- = 0 (44)

dt dt

by (28) and (29), so that the magnitudes of Charon' s orbit angular momentum h and

Pluto's spin angular momentum H remain constant. The dI/dt terms will be ignored, since

these are fairly small. Also, only the terms in the G2pq(e) up to the second power in e will

be considered here, so that q takes on only the values -2, -1, 0, + 1, and +2 in the

summations.

4. Volatile migration

DobrovoIskis et al. [1997], in their own numerical integration, find that Pluto's

obliquity and precession angle vary according to the approximate equations

® -- 0 = 115.5 ° + l l.8°sin_O (45)

-- _ = 19.5 ° + 130.2°t , (46)

where t is in millions of years, so that the obliquity varies by about + 12° with a period of

approximately 2.8 x 106 years. This result is confirmed in the integration here. The

obliquity oscillation is expected to cause nitrogen and methane to migrate between Pluto's

equator and pole as the insolation pattem changes [Spencer et al., 1997]. This transport

could cause Pluto's dynamical flattening to change. The volatile loading will also cause

viscoelastic relaxation, which in tum will change the flattening. Therefore in (40)-(43)
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j_' p-- J2,hydro q" t_kJ:

18

(47)

where J_.hydro is given by (6) and AJ_" is the change in Pluto's 3'2coefficient due to the

volatiles, elasticity, and viscosity.

Now, the hydrostatic geometric flatteningfhyar o is approximately [Kaula, 1968, p.

69]

3: co,Rg (48)
f.yd, o _ _ 2.hya_o + 2GM e

which gives values on the order of 0.0003. This gives a 340 m difference in the polar

versus equatorial radius. The amount of volatile transport over an obliquity cycle is

unknown, but theoretically could be several kilometers [Spencer et al., 1997]. Thus the

theoretical maximum flattening produced by volatiles might be several times greater than the

340 m produced by hydrostatic flattening. Hence crossing the eccentricity resonance and

the half-Plutonian year resonance, which requires doubling J_P from volatile migration,

appears to be possible.

The effective viscosity of Pluto's mantle, which depends strongly on temperature,

is unknown [McKinnon et al., 1997]. Marcialis [1985] has argued that the relaxation time

could be as short as 30,000 years, producing a topographically bland planet. It will be

assumed here that Pluto can support nonhydrostatic loads for long periods of time.

5. Numerical integration

The values used in the numerical integrations are listed in Table 1. The inclination I

of orbit about the Sun with respect to the invariable plane, its argument of perihelion co, and
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nodalratedD./dt were all assumed to be constant. The starting values for 0, ¢, O, and

(denoted by the subscript zero in Table 1) were taken from (45) and (46) for t = 0, so that

initially Charon orbits in Pluto's equatorial plane. The other values for the Pluto-Charon

system shown in Table 1 were somewhat arbitrary, but chosen to insure that Pluto crossed

the eccentricity resonance as its flattening changed.

The change in flattening due to the movement of volati!es was assumed to have one

of the two forms

- -Fsin$ (49)
J_,hydro

J_,hydro
= +Fcos _ (50)

so that by (45) the change was proportional to the change in obliquity of the Pluto-Charon

system. In the case of (49) there is no phase lag, and in the case of (50) the phase lag is

90 °. The negative sign !n (49) comes from Pluto having a mean obliquity wherein the

average annual insolation at the poles is greater than at the equator [Ward, 1974, Figure 9];

as the obliquity oscillates to a higher value, the poles see less sunlight, so that volatiles

would be expected to accumulate there, leading to a smaller J2 e. The rationale for the 90 °

phase lag in (50) is that this is what would be expected on a volatile-rich planet [Rubincam,

1995, p. 371]. F is simply the maximum fractional change in ./2p compared to hydrostatic

equilibrium. F arbitrarily took on the values 0.016, 0.167, and 1.67 in the integrations.

The change in Pluto's 3"2p in geared through _ to the obliquity 0 of Charon's tilt, rather than

though Pluto's obliquity ®. The reason is that d_provides a smoother changing flattening,
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sincethesmallerangularmomentumof Pluto compared to Charon' s orbit can cause O can

jitter on a rapid timescale. For runs where F = 1.67, J2p was not allowed to drop below

15% of its hydrostatic value, the reason being that a larger accumulation of volatiles at the

poles would cause polar wander, limiting the size of J2p. Polar wander on Pluto will be

treated in a future paper.

David D. Rowlands wrote the program which integrated (40)-(43) according to an

eleventh order Cowell predictor-corrector scheme. Runs were made on a Cray YMP

supercomputer. The step size was 9.467 × 106 seconds for F = 0.0167 and 0.167. To

integrate through one complete obliquity oscillation required about 9,400,000 steps. The

same step size was used for F = 1.67, except in the neighborhood of the resonances, where

the integrations with this step size were unstable. In these regions the step size was

decreased by a factor of 50.

The results are shown in Figures 3-4. Both figures show the angle between Pluto's

equator and Charon's orbital plane lec as a function of time with high-frequency

oscillations smoothed out, where

cos = • (51)

In other words, Iec is the mutual inclination. Figure 3 (solid line) uses (49) with F =

0.0167 only, while Figure 4 uses (50) with F = 0.0167 (solid line), 0.167 (dashed line),

and 1.67 (dotted line).

In the case of F = 0.0167 (solid lines in Figures 3 and 4) Pluto's geometric

flattening changes by about 10 m. Each graph shows that Charon's orbital plane can tilt

out of Pluto's equatorial plane by as much as 2 ° by crossing the eccentricity resonance for

this value of F, assuming there is no tidal friction. The change in flattening for this value
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of F is not large enough for Pluto to cross the half-Plutonian year resonance. In Figure 3

lec immediately jumps ups to a nonzero value.

Using (50) with F = 0.167 (dashed line in Figure 4) is also not large enough to

cross the half-Plutonian year resonance. In this case Ipc is only about 0.3 ° after 5.6 x 106

years. This is smaller than for F = 0.0167, so it must be concluded that the size of the

jumps depends on the speed at which Pluto crosses the resonance. A large change in

flattening over the obliquity cycle means that Pluto spends little time near the eccentricity

resonance, producing smaller jumps.

Using (50) with F = 1.67 is shown by the dotted line in Figure 4. Here the change

in Pluto's flattening is now large enough to cross the half-Plutonian year resonance, which

it does near 0.25 × 106, 2 × 10 6, 2.8 × 10 6, and 4.8 x 106 years. The increase in lec after

5.6 × 10 6 years is larger than for the case where F = 0.167, thanks to crossing the strong

half-Plutonian year resonance. Of course Pluto still crosses the eccentricity resonance, but

these crossings produce negligible changes in mutual inclination.

Other computer runs were made with no volatile migration at all (AJr = 0), so that

J2e = constant. Jf was then adjusted to make the system as resonant as possible. This lead

to lec oscillating to values as large as 4 °. From this result it is not surprising that the

smallest amount of volatile movement (F = 0.0167 in Figures 3 and 4) produces the largest

jumps: the parameters have been chosen to insure that the system crosses the resonance; a

small amount of volatiles means the system is already very close to being resonant,

producing large changes in Ipc.

6. Tidal friction and libration
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While foregoing computations did not include tidal friction, its effect on the mutual

inclination Iec can be estimated from the tidal friction equation of Kaula [1964, p. 676]:

= _k=lsin =,,01
3na 3sin Ipc

4 _,Mp +M c

(52)

where only the g = 2, m = 1, p = 1, q = 0 term gives a significant contribution, with the

F_,_(Ipc) being the inclination functions, ks the Love number, sin _u0 ---1/Q (Q being the

quality factor), and sin Iec -- Ipc. For the parameters of the system given in Table 1 (52)

can be easily integrated to give

lpc = lOC e -23.6(k2/Q)t (53)

where t is in millions of years, so that tidal friction operating alone makes the mutual

inclination decay towards zero. The ratio kz/Q is unknown for Pluto; [Dobrovolskis et aL,

1997, p. 179] estimate may ks may be as high as 0.053, while Q is usually assumed to be

about 100, so that kz/Q < 0.00053. Goldre&h et al. [1989] assume k/Q = 10 .3 for Triton,

which is similar in size and composition to Pluto. Using Goldreich et al.'s higher value as

the worst case estimate gives a decay in Iec of only 7% over the 3 × 106 year precession

cycle, so that it does not appear that tidal friction would damp out the resonance jumps very

much for the times considered above, justifying its neglect in the integrations here. It could

become a major factor on this short timescale if kz/Q is a not-impossible 10 times larger
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thanestimated.Tidal frictionwill definitelyhaveto be taken into account for longer

periods of time (see the Discussion) than just the two obliquity cycles examined above.

Libration has also been ignored here. In addition to rigid body libration, there will

be libration due to volatile migration as well. The movement of volatiles will change

Pluto's moment of inertia, so that its spin rate will change due to conservation of angular

momentum. Pluto's rotation will no longer be synchronous, and the tidal bulge raised by

Charon on Pluto will swing out of the line joining their centers until checked by Charon's

torque and synchronism is reestablished. The torque will alter Pluto's rotation rate and its

distance from Charon. These phenomena are not included in the above calculations and

represent future avenues for research.

7. Discussion

The foregoing analysis indicates that Pluto may cross the eccentricity resonance and

possibly the half-Plutonian year resonance through the movement of volatiles during the 3

x 106 obliquity oscillation. The integrations over two precession cycles indicate that the

Charon's orbital plane may depart from Pluto's equatorial plane by as much as 2 °,

depending on the supply of volatiles and how close Pluto is to the resonance. Because the

integrations were not carried past 5.6 x 106 years, it is not presently known how large the

mutual inclination lec might grow with time. Given that making the system as resonant as

possible gives at most 4 °, the maximum tilt may be 4 °, but longer integrations are

necessary to settle the question. Though tidal friction was ignored here, it will have to be

taken into account for longer periods of time, so that the mutual inclination over the age of

the solar system will be controlled by the interplay of tidal friction and resonance crossing.

Observing that Charon orbits out of Pluto's equatorial plane would be evidence for
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resonance crossing and the movement of volatiles, but if the mutual tilt is only a few

degrees, its detection would be difficult from just a flyby mission.

A Pluto flyby mission might be expected to measure Mp, M c, Rp, J2e, a, n, and cop.

If Pluto is in hydrostatic equilibrium, then .12e provides the condensation factor _ via (6),

(8), and (10). However, the migration of volatiles may cause Pluto's flattening to be

nonhydrostatic, spoiling the determination of the moment of inertia. A measurement of the

mutual tilt might at least provide a weak constraint between _, the movement of volatiles,

and tidal friction.

The migration of volatiles and the subsequent resonance jumps may be a way of

secular changing Pluto's obliquity through the phenomenon of climate friction [e.g.,

Rubincam, 1990, 1993, 1995, 1999], also known as obliquity-oblateness feedback [Bills,

1999]. This will be investigated in a future paper.

The question arises as to whether Pluto is not just crosses, but actually formed in

the eccentricity resonance. There are strong arguments against it. There is no obvious

reason why Pluto should be in the resonance. Pluto and Charon reach their final Cassini

states within a few million years of formation [FarineUa et al., 1979]; the states are

determined by the total angular momentum of the system. If the resonance primordial, by

what process did the masses apportion themselves in the correct ratio during accretion so as

to fall in the resonance? And why should it fall into it? With Charon out of the equatorial

plane, tidal friction would dissipate energy. One would expect a final state in which energy

dissipation is minimized, not maximized. Even if the system did form in the resonance,

impacts might be expected to disturb it away from the resonant state.

Another argument, due to Bruce G. Bills (private communication, 1999), is the

narrowness of the resonance: a deviation of Pluto's flattening of only a meter or two away

from the resonant value would cut the tilt from 4 ° to a fraction of a degree. That Pluto's
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shapewouldconformto suchanarrowtoleranceseemsunlikely. Still, it is a peculiar

coincidencethatthePluto-Charonsystemis socloseto theeccentricityresonance.There

maybesomeunthought-ofmechanismthatforcesthesysteminto it.
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FIGURE CAPTIONS

Figure 1

The precession-orbit resonances, assuming hydrostatic flattening for Pluto. The

lower shaded area shows the resonance with the orbital period of Pluto about the Sun

(250.8 Earth years), while the upper shaded area shows the other resonance with half the

orbital period (125.4 Earth years). For each resonance the lower boundary is at (a/R e ) =

16.2, while the upper boundary is at 17.1. The resonances fall somewhere in the shaded

areas. The region between the dashed lines gives the observed range of Mc/M_,. Pluto may

in the eccentricity resonance, while the half-Plutonian year resonance appears to be ruled

out, unless Pluto has a large nonhydrostatic flattening or the mass ratio is soriously in

error.

Figure 2

Diagram of the geometry of the Pluto-Charon-Sun system. The unit vectors i_i

forms a fight-handed inertial coordinate system, with i being normal to the invariable

plane. The unit vector fi is normal to the orbital plane of Pluto about the Sun and makes an

angle I with 2. The ascending nodal Iine AB of Pluto's orbital plane makes an angle _ in

the invariable plane. Perihelion position is denoted by co and the true anomaly byf

Pluto's distance from the Sun is rs. The unit vector b is normal to Charon's orbital plane.

Charon's orbital plane is tipped by an angle 0 to Pluto's orbital plane about the Sun. The

east longitude d#of l_ in Pluto's orbital plane is measured from CD, which is parallel to AB.

For Pluto's orientation, §, O, and _ are completely analogous to !_, 0, and _,

respectively. The diagram is not to scale.
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Figure 3

Theanglelec between Pluto's equatorial plane and Charon's orbital plane as a

function of time for (AJ 2/.12p ) = -F sin ¢, where F = 0.0167. The change in the flattening

is in phase with the obliquity oscillations. The initial conditions are d_, • = 19.5 ° and 0, O

= 119.439 °, so that Charon starts out orbiting in Pluto's equatorial plane. The jumps occur

at the eccentricity resonance, except for the one near t = 0. The half-Plutonian year

resonance is not reached. The 5.6 x 10 6 year integration gives two complete precession

periods of Charon's orbit. The curve is highly smoothed. No tidal friction is assumed.

Figure 4

The angle Iec between Pluto's equatorial plane and Charon's orbital plane as a

function of time for (zk/2/.12 p ) = F cos d?, where F = 0.0167 (solid line), F = 0.167

(dashed line), and F =1.67 (dotted line). The change in flattening is 90 ° out of phase with

the obliquity oscillations. The initial conditions are _, • = 19.5 ° and 0, O = 119.439 °, so

that Charon starts out orbiting in Pluto's equatorial plane. Only the curve for F =1.67

reaches the half-Plutonian year resonance. The 5.6 x 106 year integration gives two

complete precession periods of Charon's orbit. These curves are highly smoothed. No

tidal friction is assumed.
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Table 1

Assumed parameters for the Pluto-Charon system.

starting values used in the integrations.

The last four values are the

Pluto mass 1.288 x 10 22 kg

M c Charon mass 1.891 × 1021 kg

Rp Pluto radius 1149.825 km

condensation factor 0.38

a Pluto-Charon distance 19,662 km

d_dt nodal rate -5.37 × 10 "_4s 1

I orbital inclination 15.91 °

co argument of perigee 90°

00 Charon obliquity 119.439 °

d_° Charon precession angle 19.5 °

Oo Pluto obliquity 119.439 °

q_0 Pluto precession angle 19.5 °
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